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Abstract

It is proved that in euclidean n-space the maximum M(p) and
minimum m(p) of a f'ixed positive det'inite quadratic polynomial Q
on spheres with fixed center are both convex functions of the radius o
of the sphere, 1In the proof, which uses elementary calculus and a
result of Forsythe ard Golub, m"(p) and M'(p) are shown to exist
and lie in the interval [2)\1,2)\n] , where )‘i are the eigenvalues of

the quadratic form of @ ., Hence m"(p) >0 and M'(p) >0 .
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Let A be a ¢lven symmetric, nonsinrular matrix of real clemente
and order n, IL¢t b be a glven column vector off n  real cleanents.

For cach real column n-vector x , the nonhomorencous quadratic polynomial

Qx) = (x-b)" A(x-D)

(T denotes transpose) is a real number., Let A SA S S, be

the (necessarily) real eigenvalues of A . Let n(p) Dbe the minimm of
Q(x) on the sphere Sp = {x: Xx = p2} , and let M(p) be the maxirum
of Q(x) on sp . M. J. D. Powell asked the author whether m(p) is a

convex function of p when A is positive definite. An affirmative

answer is given by the theorem:

(1) Theorem, If A is positive definite (i.e., if 0 < )\l) , then both

m(p) and M(p) are convex functions of p , for all p >0.

Theorem (1) will follow from the following result:

(2) Theorem. Let A be any nonsingular matrix. Then for p >0,

the second derivatives m"(p) and M'(p) both exist, and

(3) m'(p) 2 2A;  and M'(p) 22\ .
Equality occurs in (3) if and only if Ab = Ab . Moreover,
(4) m'(p) <A, and M'(p) < A

and equality occurs in (4) if and only if Ab = AL




Review of Previous Work

The proof of Theorem (2) is based on techniques developed in Forsythe
and Golub [1], which dealt only with the case p =1 . The relevant
results of [1] are now summarized and extended ¢ veneral p e

Tet {ul,...,un] Le an orthonormal real set oi cigenvectors ot A,
with Ani = A

in ¢ at which Q(x is stationary with respest to therce is a real
P P P’

194 (i =1y,00eyn) » let b= E: biul . TYor any vector x

nunber A wi‘h

xibi
(7) ST W Y ’
i
so that (6) tecomes
2 a
1 .
() eI Ty e I i .
i=1 (xi-x)

For ecach ¢iven value of p > 0, equation (8) determines from 2 to 2n

real values of N\ ., For each A so determined, equation (5) determines onu

ct A (if all b 0, ti M s uni ). F A

or more vectors x if al | £ 0, then x" is unique). or any x ,
we liave

() axt) = ),

wi.ere
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(10) f(A) = 7\2 ;n —?-i-—l—-r .
d =1 ()\i-x)-_

Now Q(x) 1is stationary with respect to Sp at any ¥ . For given p ,
let AL = AL(p) and AR = AR(p) be the smallest resp. largest values
of A satisfying equaticn (8). Theorem (4.1) of [1l] states that f(AL)

and (A are the minimum resp. maximum values ol Q(x) on £ .

R) p
Much of [1] was devoted to the singular cases where gsome bi =0,
For the present investigation, where we are interested only in the
velues of Q(x) , we simply omit from the sums (&) and (10) all tecrms
with bi = 0, and reduce n , if necessary. laving done that, it is then

clear from (8) that, for any p ,

(11) AL <N and A <A

1 R °

This concludes the necessary summary of [1].

As a digression, the author notes that the main theorems (2.7) and
(4.1) of [1]) were proved in {1] by studying f£(A) and g()) for complex
values of A . In late 1965, Professor W, Kahan [unpublished] showed us

how to prove those thecrems more simply, using only real values of A .

Proof of Theorem (2).

With the above apparatus our problem is reduced to an exercise ir. the
differential calculus. For each p > 0 we determine a unique Lagrange
multiplier A = A(p) rrom (8) -- eituer the minimal A, or maximal AR .

For ease of exposition, suppose A(p) = A, . Then the function

(12) m(p) = £\ (p))

N




is determined from (10). Since f{A) and g(\) arc analytic for

A< the tunction m(p) has derivatives of all order. We shall

l 2
determine m"(p) by calculus. To simplify some expressions, we

introduce the abbreviations

%2b2

(15) a "z '_ll__ (p-E, 7 h) .
Poin (xi-A)2

Differentiating (10) and simplifying, we t'ind:

df .
1) — el )
(4.4) ETy ”)\Otj 5
2
dr
— = 2(1 6 .
(i15) 2 5+ 6Ny

(16) 02 =p .

Differentiating (8) twice with respect to p yields

d)

(17) d—;af: = P b
& o)

(18) d—%a,+5(?) o = 1 .
dp" = ?

Solving (17) and (18) in turn, we find

AN P :
(19) dp Toa. ’
P
) O E(X
( ﬁo) d’ A _ 1 P IR
- P Ty ’

o
[
W
R
©
2 i. E._ *

. : -4
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Now, by the chain rule,

dm _ df | dA

dp " 9

and

(21) dn & (@2, df 4
a0° 22 G X :;5

We now substitute into (21) the expressions (14), (15), (19), and (20).

We find that

2
2 2 3p @
dm 1 L
(22) m'(p) = =5 = (2, + 630y,) E o, | = - — ]
dp2 b} L a§ 3 (13 ag

Hence

_El;mn(p) = )+ % - ai- ()\03 + 02) ’ by (16>'

)
Simmlifying,
32
-;‘-m"(p) = (1]" ﬁ‘_}\ibi5 » or
3 iml (xi-x)
(23) 2a'(p) = :

Formula (23) is the end of our calculus exercise. In it, A is
determined trom solving (8). Note by (11) that the factors ()\i-)\)3 all

1ave the scme sign for i =1, 2,..., n, whether A=A, or A=A

L R
Hence % m"'(p) 1is a weighted average with positive weights of the {ki} 5




It follows that

=

m' (p) > M o with equality only when all X in (23)
are z2qutl to M o loe., 1f b, =G for A, >A . This proves (3),
and (4) is proved analogously. This concludes the proof of Theorem (2).

It would be desirable to have a simple geometrical proof.

What if A 1is singular?

If A 1is singular, that is, if some %i = 0 , the situation is
somewhat more complicated, just as the case where some %ibi =0 1is

complicated in [1). Theorem (2) fails to hold for semidefinite matrices,

because m'(p) may not exlst for some p , as the following example shows:

2 T
(2k) Example., For n =2 1let Q(x) = (x2-l) , Where x = (xl,xe)

Then

m(p) =

so m'(L) does not exist.

If xl = 0 , the lagrange multiplier remains at A = O for all

sufficiently large p .

Theorem (1) can easily be extended to semidefinite matrices by

continuity. We have

(25) Theorem. If A is positive semidefinite (i.e., if 0 < N ),

then both m(p) and M(p) are convex functions of p for p >0

In proof, we note that m(p) and M(p) are continuous functions of
the elements of A, If A 1s semidefinite, it can be approximated by -

g » for which m, and M, are convex, with HA-AE]

Letting € =0, we find that m = lim ms and M = lim Me are convex,

definite matrix A

#
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